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Abstract
Oxazines have brought much synthetic interest due to their extensive biological ac-
tivities. These are the important category of heterocycles, which may be formally 
derived from benzene and its reduction products by convenient substitution of carbon 
(and hydrogen) atoms by nitrogen and oxygen. In the last few decades, oxazine de-
rivatives have documented as worthy synthetic intermediates and also blessed with 
notable sedative, analgesic, anticonvulsant, antipyretic, antimicrobial, antitubercular, 
antimalarial, antioxidant, and anticancer activities. Nowadays, it is important to de-
velop new classes of compounds with more effective mechanisms due to drug resist-
ance activity in which the ability of drug to effectively treat disease can be reduced. 
The aim of the article is to collect and make a more generalized review on the synthe-
sis of oxazine derivatives and their pharmaceutical and biological activities. We hope 
this review will provide ample references for the researchers concerned with azines 
in generally and oxazines in particular.
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1 |  INTRODUCTION

Oxazines have attracted significant interest for past few de-
cades, but still remain little studied compounds. These are 
the heterocyclic compounds having one oxygen and one ni-
trogen atom in a six‐membered ring of doubly unsaturation. 
Eight existing isomers of oxazines (Eicher, Hauptmann, & 
Speicher, 2013) are reported depending on the relative posi-
tion of the hetero atoms and double bonds. 1,2‐,1,3‐, and 1,4‐
oxazines are the O‐analogues of the three isomeric diazines. 
The derivatives of oxazines such as dihydro‐1,3‐oxazine, tet-
rahydro‐1,4‐oxazine are well known. Cinnabarine and cinna-
baric acid derived from biodegradation of tryptophan (Stone, 
Stoy, & Darlington, 2013) are the natural dioxazines. In addi-
tion, some fluorescent dyes such as Nile blue and Nile red are 
based on the aromatic benzophenoxazine (Figure 1).

Cope and Holly have reported first aromatic oxazines in 
1944 by Mannich reactions. Fairly, less number of works has 
been carried out on these compounds till date. Jaiswal et al 
(Jaiswal, Sharma, Prikhodko, Mashevskaya, & Chaudhary, 
2017) have reported a synthetic green protocol for the one‐
pot synthesis of functionalized 2‐oxo‐benzo[1,4]oxazines 
under ultrasound irradiation. This method gave excellent 
yields (up to 98%) with no side products as compared to 
conventional methods. Ansari et al. (2019) have used a syn-
ergistic catalysts system ZnO NPs and malic acid for the 
eco‐friendly synthesis of oxazine derivatives. In addition, 
several synthetic approaches for the preparation of oxazines 
have been reported (Desai, Bhatt, & Joshi, 2019; Gaonkar, 
Nagaraj, & Nayak, 2019; Hu, Zhang, & Sun, 2019). The most 
common simple 1,4‐oxazine is tetrahydro‐1,4‐oxazine (mor-
pholine), which is a colorless liquid and miscible in water, 
and it has many applications in medicinal chemistry and drug 
discovery (Pal’chikov, 2013). Oxazine heterocycles possess 
peculiar significance as they establish a valuable group of 
natural and non‐natural products and display plenteous bi-
ological activities (Mohebat, Abadi, Soltani, & Saghafi, 

2016). The synthetic oxazine derivatives are well known for 
their promising biological properties, for example, 5‐b‐D‐ri-
bofuranosyl‐l,3‐oxazin‐2,4‐dione (Minimycin) is employed 
as an antitumor agent (Kusakabe et al., 1972), while 5‐meth-
yl‐3H‐1,3‐oxazine‐2,6‐dione as a suicide inactivator of serine 
proteases (Figure 2; Moorman & Abeles, 1982).

These compounds also exhibit a variety of biological ac-
tivities including anti‐inflammation, antioxidation, PI3 ki-
nase inhibition, and neurosedation (Lanni et al., 2007; Roy, 
Mitra, & Saha, 2009). Due to their enormous biological sig-
nificance, these compounds could be employed for the devel-
opment of new chemical entities to combat various diseases. 
Tetrahydro‐4H‐1,2‐oxazines are the essential structural con-
stituents for most of the fungicides, herbicides, and broad‐
spectrum bactericides (Patel & Stevenson, 1992). Oxazines are 
used as fundamental building blocks for many natural products 
(Zimmer, Collas, Roth, & Reißig, 1992). Using oxazine as syn-
thon, one may be able to reconcile pyrroles (Nakanishi, Shirai, 
Takahashi, & Yoshio, 1981; Oppolzer, Bättig, & Hudlicky, 
1981), pyrrolidine (Angermann, Homann, Reissig, & Zimmer, 
1995), and γ‐lactones (Gilchrist & Roberts, 1979) via the re-
ductive cleavage of C‐O and N‐O bonds. Also, the compounds 
containing dihydro‐1,3‐oxazine ring system displayed anti‐
HIV (Cocuzza et al., 2001; Pedersen & Pedersen, 2000), an-
ticancer (Hsu & Lin, 1996; Nair, Salter, Kisliuk, & Gaumont, 
1983; Shoji, Otake, & Morishita, 2019), antibacterial (Prasad, 
Rohilla, Roy, & Nath, 2012), antifungal (Fringuelli, Pietrella, 
Schiaffella, Guarraci, & Perito, 2002), antithrombotic 
(Buckman et al., 1998), anti‐inflammatory activity (Akhter, 
Husain, Akhter, & Khan, 2011), and its versatility as synthetic 
intermediate (Singh & Han, 2007). Furthermore, 6‐arylben-
zoxazines (Figure 3) are reported as potent non‐steroidal pro-
gesterone receptor agonists (Zhang et al., 2002).

Thorough literature survey revealed that the oxazine 
derivatives exhibited well known pharmacological activi-
ties including antihyperglycemic (Jamal, Ansari, & Rizvi, 
2009), antileishmanial (Thompson, O’Connor, Marshall, 
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Yardley, & Maes, 2017), antitubercular (Kmentova et al., 
2010; Ray & Roy, 2012), antiulcer (Katsura, Nishino, & 
Takasugi, 1991), anticancer (Nongrum et al., 2019; Zuo 
et al., 2012). Moreover, the oxazine derivatives have been 
extensively studied because of their profound biological 

activities including antitumor (Chylińska, Urbański, & 
Mordarski, 1963), antihypertensive (Kajino, Shibouta, 
Nishikawa, & Meguro, 1991), antibacterial (Chylińska, 
Janowiec, & Urbański, 1971), antifungal (Tang et al., 
2012), antithrombotic and neuroprotective agent (Joyce 
et al., 2003). In particular, naphth‐oxazine derivatives 
and some salts derived from oxazine derivatives adver-
tised therapeutic potential for the treatment of Parkinson's 
disease (Coleman, Quinn, Traub, & Marsden, 1990; Du, 
Grandeury, & Jiang, 2019; Kerdesky, 2005; Stoessl, Mak, 
& Calne, 1985). Benzoxazine derivatives have been syn-
thesized as promising inhibitors of monoacylglycerol 
lipase (Bell, Benz, & Grether, 2019). Research in the pre-
vious decades explored that oxazine moiety shows potent 
antitumor activity, so by inserting reductive group at dif-
ferent position of oxazine moiety will design hybrid com-
pounds holding both reductive group and cytotoxic group. 
This will be treated as an excellent precursor for novel hy-
poxia‐targeted compounds for cancer therapeutics and will 
be able to answer a myriad of questions. Considering the 
manifold and wide‐ranging applications in pharmaceutical 
and biological field of these compounds, we are planned to 
write this review which will give an in‐depth insight into 
various application aspects of these classes of compounds.

F I G U R E  2  Structure of Minimycin and 3H‐1,3‐oxazine‐2,6‐
dione ring system
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2 |  ANTIMICROBIAL STUDY

Nowadays, microbial infections are the common challenges 
for the researchers as large numbers of patients are at risk 
due to this. The lack of effective treatments and antimicro-
bial resistance are the main cause of this problem. Hence, the 
improvement of new antimicrobial agents with more effec-
tive mechanisms is vital for the public health (Rice, 2006). 
Oxazines and their derivatives are known to be promising an-
timicrobial agents. El‐Bayouki, Basyouni, Khatab, Kandel, 
and Badawy (2017). have designed a concise, one‐step pro-
cedure for synthesis of some tetrahydro‐4H‐benzo[1,3‐e] 
oxazines, and β‐acylamino ketone derivatives. Some selected 
compounds 1–4 were tested for their antimicrobial activ-
ity in nutrient agar plates and potato dextrose agar medium 
against B. thurngensis, E. coli, B. fabae, and F. oxysporium. 
Streptomycin and Treflucan were used as standard drugs. 
The compound 1 showed highest activity than other tested 
compounds (Table 1).

Chernov et al. (Chernov et al., 2017) have synthesized 
4‐hydroxy‐1,3‐oxazin‐6‐ones derivatives 5–6 that displayed 
prominent antimicrobial activity against S. aureus whereas, 
less active against E. coli. The activity decreases with open-
ing of the oxazine ring. The study revealed that these reported 
compounds may be used for therapy of infectious diseases 
without adverse effects. The synthesis and characterization 
of oxazine bearing pyridine scaffold as potential antimicro-
bial and antibacterial activity were reported by Desai, Bhatt, 
Joshi, and Vaja (2017). It was observed that some derivatives 
compounds such as 7a–f exhibited remarkable antibacte-
rial potency based on substitution at benzene ring to affect 
their biological activities as electron‐withdrawing group can 
increase the antibacterial activity while electron‐donating 
group may increase antifungal activity. Compounds 7c and 7d 
displayed good inhibition over selected fungal strains (Figure 
4). The 3D‐QSAR study of such compounds was explained 
by CoMFA and CoMSIA models to get valuable informa-
tion desired to improvise the biological activity. Moreover, 
molecular docking study against microbial DNA gyrase was 

carried out. Desai, Bhatt, and Joshi (2019) have reported 
the antimicrobial activity of 1‐((1‐(4‐(2H‐benzo[e][1,3]
oxazin‐3(4H)‐yl)phenyl)ethylidene)amino)‐6‐((arylidene)
amino)‐4‐(4‐chlorophenyl)‐2‐oxo‐1,2‐dihydropyridine‐3,5‐
dicarbonitriles. The compounds were also studied for their 
antimicrobial activity against E. coli, P. aeruginosa, S. au-
reus, S. pyogenes, C. albicans, A. niger, and A. clavatus. 
Ampicillin and Griseofulvin were used as reference drugs.

Mathew et al (Mathew, Aggarwal, Kumar, & Nath, 
2014) have reported a novel 6‐chloro‐9‐(3‐chlorophenyl)‐4‐
methyl‐9,10‐dihydro‐2H,8H‐chromeno[8,7‐e][1,3]oxazine‐2‐
thione (8) compound by Mannich‐type condensation reaction. 
These compounds were fully characterized by using some 
spectral techniques. A significant zone of inhibition for the 
compound was obtained against S. aureus and K. pneumonia. 
Nagamallu, Gurunanjappa, and Kariyappa (2017) have re-
ported the antimicrobial and antioxidant activity of some cou-
marin based 1,3‐benzoxazine derivatives 9a–c. The derivatives 
were fully characterized by several spectral techniques. These 
synthesized compounds flashed significant antimicrobial ac-
tivity. It is also observed that the derivatives having methoxy 
and methyl substituents in the phenyl ring exhibited better an-
tioxidant properties when tested. A series of novel coumarin 
based 1,3‐oxazine derivatives 10a–c has been synthesized by 
Zhang et al. through a microwave‐assisted three component 
one‐pot Mannich reaction (Zhang et al., 2016). Further, the 
compounds were characterized by using some spectral meth-
ods. The preliminary bioassays showed that compounds 6a–c 
exhibited good antifungal activity and the most active com-
pound was 6b with an IC50 value of 2.1 nM against B. cinerea 
(Figure 5).

Also, these compounds were fully characterized by sev-
eral spectral tools. New annulated heterocycles containing 
pyranooxazines 11a–d obtained from reaction of 6‐amino‐4‐
substituted aryl‐3‐methyl‐1,4‐dihydropyrano[2,3‐c]pyra-
zole‐5‐carbonitrile with acetic anhydride have been reported 
(Elziaty, Bassioni, Hassan, Derbala, & Abdel‐Aziz, 2016). 
These compounds were characterized by using several 
spectral techniques. These compounds were also evaluated 
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for their in vitro antimicrobial efficacy against four strains, 
namely Gram‐positive S. aureus, Gram‐negative P. aerugi-
nosa, C. albicans (yeast), and A. niger (fungus) and found 
significant activity. Neomycin was used as standard drug for 
the study (Figure 6).

The investigation of antibacterial screening for 3,4‐dihy-
dro‐3‐substituted‐2H‐naphtho[2,1‐e][1,3]oxazine derivatives 
12a–c has been carried out against two human pathogenic 
bacteria including against Gram‐positive B. subtilis and 
Gram‐negative E. coli (Kategaonkar et al., 2010). All these 

compounds exhibited considerable and varied activity. 
Compound 12a displayed 18.2 mm zone of inhibition which 
is more than standard Griseofluvin against C. albicans. A se-
ries of novel 6‐(1H‐benzo[d]imidazol‐2‐yl)‐substituted‐ben-
zo[b][1,4]oxazin‐7‐one derivatives have been synthesized by 
Patil et al. (2015). These compounds were fully characterized 
by using some spectral techniques. Most of these compounds 
showed moderate antibacterial activity, whereas compound 
13 showed good activity against all bacterial strains involving 
E. coli, S. aureus, Micrococcus, and B. subtilis (Figure 7).
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Abou‐Elmagd and Hashem (2013) have prepared 1‐ami-
doalkyl‐2‐naphthols 14a–f by using direct protocol. Ring 
closure of the above gave pyrazolyl‐ and indolyl oxazine de-
rivatives 15a–f while the reaction of 2‐naphthol, aldehydes, 
and ammonia solution gave dipyrazolyl‐ and di‐indolyl ox-
azine derivatives 16a–f (Figure 8). According to antiviral 
test, compounds 14e and 14f were found to be most active 
compounds. Moreover, amidoalkylnaphthols 14a–e gave high 
activity (Inhibition zone) and the other compounds showed 
moderate activities. All compounds showed no activity to-
ward P. aeroginosa, E. coli, and Proteus micro‐organisms.

Verma et al. (2012) have synthesized and characterized 
a series of 1,3‐disubstituted‐1H‐naphtho[1,2‐e][1,3]oxazines 
(Figure 9). These compounds were tested in vitro for their 
antimicrobial activity against some selected micro‐organ-
isms including E. coli, B. subtilis, and S. aureus. Compounds 
17c, 17e, 18a, 18c, and 18d showed significant antibacterial 
activity.

3,4‐dihydro‐2H‐benzo[e][1,3]oxazines 19a,b and 1,2‐
bis[3,4dihydrobenzo[e][1,3]oxazin‐3(4H)‐yl]ethanes 21 
were prepared by Mathew, Kumar, Sharma, Shukla, and 
Nath (2010); Figure 10) through Mannich‐type reaction. All 
the characterizations were carried out using spectral tech-
niques. In vitro antimicrobial activity of the synthesized 
compounds was carried out against six pathogenic fungi 
species involving C. albicans, C. neoformans, S. schenckii, 
T. mentagrophytes, A. fumigatus, and C. parapsilosis and 
four bacteria species including Gram‐positive bacteria in-
volving K. pneumonia and S. aureus and two Gram‐negative 
bacteria involving E. coli and P. aeruginosa. Compounds 

19a, b and 20a, b showed significant in vitro antimicrobial 
activity.

Oxazolidinones containing dihydro‐1,2‐oxazine ring were 
synthesized by D’Andrea et al. (2005) and tested as antibacte-
rial agents. Compound 21 proved to be most active similar to 
linezolid against a panel of Gram‐positive bacteria including 
streptococci, staphylococci, and enterococci. Cu(I)‐catalyzed 
reaction of in situ generated nitrile oxides with in situ gener-
ated N‐propargyl 1,4‐benzoxazine was employed to synthesis 
of novel derivative of 4‐((3‐(aryl) isoxazol‐5‐yl) methyl)‐2H‐
benzo[b][1,4]oxazin‐3(4H)‐ones 22a‐c (Iloni, Vasam, 
Guguloth, & Vadde, 2018). Compound 22c has shown po-
tent activity against B. subtilis and E. coli with MIC value 
12.5 µg/mL while other compounds 22a, b showed moderate 
to poor activity as compared to the standard drug streptomy-
cin (Figure 11).

Cephalandole A was first isolated from the Taiwanese or-
chid Cephalanceropsis gracilis (Orchidaceae). Cephalandole 
A and its analogues were synthesized starting from indole by 
Sharma et al. (2018); Sharma et al. (2018) and proved to have 
potential antimicrobial and antiplatelet activity. Compounds 
23a–g (Figure 12) showed promising antimicrobial activity 
against the phytopathogenic bacteria and fungi, while com-
pounds 23c, 23e, 23f, and 23g showed potent antiplatelet ac-
tivity. Compound 23d, the first aza analogue of Cephalandole 
A has potent antibacterial activity against B. subtilis and S. 
griseus strains.

Manjula, Rai, Gaonkar, Raveesha, and Satish (2009) have 
synthesized a new series of 5,6‐dihydro‐4H‐1,2‐oxazine de-
rivatives 24a‐e via hetero Dielse–Alder reaction of α‐nitroso 
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olefins with alkenes and evaluated for their antimicrobial ac-
tivities. These compounds were fully characterized by using 
several spectral techniques. These compounds exhibited sig-
nificant in vitro antifungal activity. With all the four tested fun-
gal strains including A. flavus, A. niger, F. moniliforme, and 
F. oxysporum, the maximum activity is shown by 24a while 
24b and 24c exhibited excellent activity and 24d exhibited 
weak activity (Figure 13). Moreover, compound 24c showed 
the maximum activity against E. coli, due to the due to aro-
matic ring, methoxy, and carboxylate groups in para positions. 

Compound 24e showed excellent activity against E. coli due to 
the methoxy and benzene dioxo group in para positions.

Benzo[b][1,4]oxazin‐3(4H)‐one derivatives 25a–c were 
developed by Fang et al. (2011) and evaluated for their in 
vitro antimicrobial activity against some selective strains in-
cluding Gram‐positive bacteria (S. aureus and B. subtilis), 
Gram‐negative bacteria (E. coli, P. vulgaris, P. aeruginosa), 
and fungi (C. albicans, A. aflavus). Synthesized derivatives 
exhibited potency toward all tested strains but showed only 
week activity against fungi species. Fluorine atom may play 
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an important role in enhancing the antimicrobial properties. 
Gleńsk et al. (Gleńsk, Gajda, Franiczek, Krzyżanowska, & 
Biskup, 2016) have studied in vitro antimicrobial and anti-
oxidant properties of the natural cyclic hydroxamic acid 26. 
The antimicrobial activity against S. aureus, E. coli, and S. 
cerevisiae was examined by using disk diffusion method. The 
reported compounds were also characterized by spectral tools 
(Figure 14).

Reaction of substituted aniline and formaldehyde in pres-
ence of 1,4‐dioxane led to bis‐benoxazine derivatives 27a–d 
(Lalcheta, Dhaduk, & Mendapara, 2015). These compounds 
were characterized by using spectral tools. Furthermore, 
compounds were screened against B. subtilis, S. aureus, E. 
coli, and S. typhi micro‐organisms. All compounds proved 
to have comparatively good activity against all the strains. 
Chauhan, Patel, and Mistry (2018) have synthesized new 

derivatives of coumarin clubbed 4‐(4‐fluorophenyl)‐6‐sub-
stituted phenyl‐2H‐1,3‐oxazin‐2‐amine derivatives 28a–e 
and screened for their biological studies. A novel compound 
28b had excellent activity with 25 µg/ml against E. coli and 
12.5 µg/ml against P. aeruginosa which is comparable to the 
standard drugs chloramphenicol and ciprofloxacin, whereas 
other compounds displayed poor activity against S. aureus 
and S. pyogenes (Figure 15).

Estrogen derivatives were synthesized and character-
ized by Figueroa‐Valverde et al. (2016). These compounds 
were studied for their antibacterial activity against S. typhi. 
According to the results, oxazin‐estradiol‐3,17‐diol 29 
showed high decreases on the growth of S. typhi (Figure 16).

El Azab and Khaled (2015) have synthesized heterocy-
clic fused derivatives of naphtho[1,2b][1,4]oxazin‐2‐one de-
rivatives 30a–g (Figure 17) and studied their antimicrobial 
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activities against four fungal species, namely A. fumigates, G. 
candidum, S. racemosum, and C. albicans as well as against 
four bacterial species, namely S. pneumoniae, P. aeruginosa, 
B. subtilis, and E. coli. Some compounds showed highest 
degree antifungal and antimicrobial activity while others 
showed moderate to week activity.

Borgaonkar and Patil (2016) have studied the antimicro-
bial activity of 1,3‐benzoxazine derivatives. These reported 
compounds were screened for their antibacterial activities 
against E. coli, S. aureus, P. aureginosa, B. subtilis, and anti-
fungal activities against A. niger, A. flavus, P. chrysogenum, 
and F. moniliforme. Compound 31a exhibited excellent an-
tifungal activity while compounds 31b–d were showed sig-
nificant antibacterial and antifungal activities. Compounds 
31e and 31f exhibited good antifungal activity due to chloro 
and iodo substituents in their structure that can enhance anti-
fungal activity. de Brito et al. (2017) have studied the effect 
of two cyclohexene‐fused 1,3‐oxazines in different cultures 
involving B. cereus, E. faecalis, E. coli, K. pneumoniae, S. 
enterica, S. marcescens, S. flexneri, and S. aureus. Bioassays 
suggested that compound 32b is more effective against bac-
teria than compound 32a with lowest MIC and MBC values. 
This result marked that oxazines exerted direct effects on 
bacteria and parasite schistosomes (Figure 18).

3 |  ANTITUBERCULAR STUDY

Tuberculosis (TB) is mainly caused by M. tuberculosis. 
The emergence of drug‐resistant TB, multidrug‐resistant 
TB, extensively drug‐resistant TB and totally drug‐resistant 
TB increase the alertness to eliminate TB worldwide (Hu 
et al., 2017). Isoniazid is a frontline anti‐TB drug, but un-
fortunately, bacterial strains resist INH at an alarming rate. 
Hence, the development of more effective anti‐TB drug is 
the common threat for the researchers nowadays. Oxazines 
and their derivatives are known to have excellent antitu-
bercular activity. 2‐nitroimidazooxazine derivatives 33a,b 
with modification at the C‐7 position were synthesized by 
Kang et al. (2015) These derivatives exhibited better activity 

than PA‐824 against M. tuberculosis H37Rv strain in vitro. 
Compound 33b displayed most potent antimycobacterial 
activity with MIC = 0.050 μM. Kamble et al. (2015) have 
synthesized and characterized somebenzo[1,3]oxazine deriv-
atives with their biological property. Among the synthesized 
compounds, compounds 34a–d showed promising activity 
against M. tuberculosisas compared with Rifampicin and 
Ethambutol. The importance of chloro, nitro, and methoxy 
group for the manifestation of antimycobacterial activity was 
also discussed (Figure 19).

Tukulula et al. (2013) have reported the antiplasmodial 
and antimycobacterial activity of some new nitroimidazoo-
xazine derivatives. Compounds 35a and 35b exhibited potent 
activity against the chloroquine‐resistant K1 strain of P. fal-
ciparum. More specifically, compounds 35a and 56b showed 
IC50 values of 0.100 and 0.164 μM. Huang, (2005) have syn-
thesized a new series of 2‐(7‐fluoro‐3‐oxo‐4‐substituted‐3,4‐
dihydro‐2H‐benzo[b][1,4]oxazin‐6‐yl)isoindoline1,3‐diones 
analogues. These compounds were fully characterized by 
spectral methods. The compounds were evaluated for their 
herbicidal activity against velvet leaf and crab grasses. 
Compound 36 showed a high herbicidal activity. Two dias-
tereomers (S and R) of the 7‐methyl‐nitroimidazo‐oxazine 
37a,b have been synthesized and characterized by Li et al. 
(2008) Both derivatives showed similar activities against M. 
tuberculosis but the disadvantage of synthesized compounds 
is poor water solubility (Figure 20).

4 |  ANTIOXIDANT STUDY

The antioxidants play a remarkable performance to decel-
erate the oxidative process by scavenging the free radicals, 
thereby prevent the extent of damage to the cell walls. The 
efficacy of antioxidants is determined by their free radical 
scavenging activity. DPPH contains an odd electron and is 
used for scavenging activity. DPPH is a stable free radical 
which accepts a proton or an electron to become a stable dia-
magnetic molecule, viz. hydrazine (Scheme 1). A substance 
capable of donating electrons or hydrogen atom is able to 
convert the purple color of DPPH to its non‐radical yellow 
color, which can be seen spectrophotometrically (Mohapatra, 
Das, Pradhan, Maihub, & El‐ajaily, 2018).

Qamar et al. (2018) have synthesized a series of 1‐
(6‐methyl‐2‐substituted phenyl‐4‐thioxo‐4H‐1,3‐ox-
azin‐5‐yl)ethanones 38a–g from the reaction of benzoyl 
isothiocyanates and acetylacetone. The free radical scav-
enging activity of these derivatives was performed and 
showed moderate antioxidant activity. These were also ex-
amined for their inhibitory activity against carbonic anhy-
drase II. The compound 38b was the most potent inhibitor. 
Compounds 38c, 38h, and 38n also performed superior 
inhibitory activities as compared to other synthesized F I G U R E  1 6  Structure of compound 29
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derivatives. Zykova, Odegova Boichuk, and Galembikova 
(2015) have synthesized 3‐substituted 4‐hydroxy‐6‐phe-
nyl‐3,4‐dihydro‐2H‐1,3‐oxazines 39a,b from 1,6‐dia-
ryl‐3,4‐dihydroxy‐2,4‐hexadiene‐1,6‐dione and various 
arylidenearylamines. These compounds were examined in 
vitro for their antioxidant and cytotoxic activity. Highest 
antioxidant activity was observed for 39a and 39b but did 
not show cytotoxic properties against normal and human 
tumor cells (Figure 21).

5‐(2H‐tetrazol‐5‐yl)‐4‐thioxo‐2‐(substituted phe-
nyl)‐4,5‐dihydro‐1,3‐oxazin‐6‐ones 40a–c (Figure 22) from 
1,3‐oxazine‐5‐carbonitriles were designed and synthesized 
(Qamar et al., 2019). These synthesized compounds were 
tested their inhibitory potential against mushroom tyrosi-
nase. The results confirmed that all exhibited compounds 
have significant tyrosinase inhibitory activity while com-
pound 40a having 2‐bromophenyl moiety was the most 

potent among the series. Moreover, compounds 40b and 
40c displayed superior DPPH radical scavenging activity 
than other analogues.

New derivatives of 2‐[4‐(hetero) aromatic]phenyl‐2‐hy-
droxy‐tetrahydro‐1,4‐oxazine 41a–f were synthesized to 
inhibit lipid peroxidation (Kourounakis, Charitos, Rekka, 
& Kourounakis, 2008). Synthesized compounds were 
characterized by various spectral techniques. Most of the 
compounds showed significant antioxidant activity, which 
was also higher than that of the references of trolox and 
probucol. The study revealed that the addition of a thie-
nyl group will improve the antioxidant activity, which is 
may be due to an extension of the conjugated system and 
the presence of sulfur atom. Chaitra and Rohini (2018) 
have prepared a series of novel [1,3]‐oxazine derivatives 
of N‐[4‐(2‐Amino‐4‐phenyl‐6H‐[1,3]oxazine‐6‐yl)‐phe-
nyl]‐nicotinamide. The targets were evaluated for their in 
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vitro anti‐inflammatory activity by bovine serum albumin 
and protease method and antioxidant activity by DPPH and 
NO method. Compounds 42a and 42b exhibited significant 
activity when evaluated for BSA and protease methods for 
anti‐inflammatory activity (Figure 23).

5 |  ANTICANCER STUDY

Cancer, a group of diseases, which involves uncontrolled 
cell growth with the potential to spread. 1,735,350 new 
cancer cases are estimated to occur in 2018 and 609,640 
might lead to death by this disease in USA (Mahal, Wu, 
Jiang, & Wei, 2019); therefore, the need for the develop-
ment of more effective drugs for the treatment of cancer 
cells is the main challenge for the researchers. MTT assay 
is a common model for the determination of antican-
cer activity (Scheme 2) (Mahal, Wu, Jiang, & Wei 2017; 
Mohapatra et al., 2019). Converting MTT into a purple 

colored formazan occurred at maximum near 570 nm. The 
color changes from yellow to purple in case of cells die and 
losing the ability to convert MTT into formazan including 
the reaction with NADH or similar reducing molecules that 
transfer electrons to MTT (Marshall, Goodwin, & Holt, 
1995). It is still the understanding of this mechanism is not 
clear enough. Oxazines and their derivatives are known to 
have excellent anticancer properties.

Botla, Pilli, and Koude (2017) have reported the green 
and catalyst‐free synthesis of novel 2,3‐dihydro‐1H‐
benzo[2,3]benzofuro[4,5‐e][1,3]oxazine derivatives 43a–c 
from dibenzo[b,d]furan‐2‐ol, aromatic/aliphatic amines, 
and paraformaldehyde. Synthesized compounds exhibited 
good anticancer activity against lung cancer cell (A549), 
ovarian cancer cell (SKOV3), and breast cell (MCF7) 
lines. The compound 43a displayed potent anticancer ac-
tivity by inhibiting the cell proliferation of SKOV3 with 
an IC50 value at 7.5 µM, whereas 44a and 44b derivatives 
showed moderate activity against A549 with an IC50 value 
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ranging from 11 to 15.9 µM. Furthermore, structure rela-
tionship study is also discussed to understand the biolog-
ical activity of these compounds. Maggiolini et al. (2015) 

have designed and synthesized two novel selective G‐pro-
tein‐coupled estrogen receptor (GPER) antagonists, based 
on a benzo[b] pyrrolo[1,2‐d][1,4]oxazin‐4‐one structure. 
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The novel compounds may be useful for the dissection of 
the GPER signaling and the development of new pharma-
cological treatments in breast cancer. Compounds 44a and 
44b made significant inhibition on the GPER‐dependent 
signaling as selective antagonist ligands in breast cancer 
cells including MCF7 and SkBr3 and cancer‐associated fi-
broblasts (CAFs; Figure 24).

Kumar et al. (2018) have synthesized pyrrolopiperazine 
fused with oxazines 45a–d by the reaction of δ‐alkynyl al-
dehydes and amines. These compounds were fully charac-
terized and evaluated for their anti‐proliferative properties 
in vitro using leukemia cells (K562), breast cancer cells 
(BT474), and breast cancer cells (MCF7). Compounds 45b 
(IC50 17.6 µM) and 45c (IC50 < 21 µM) showed significant 
inhibition against human breast cancer cells. On the other 
hand, compound 45d showed good activities against K562 
with an IC50 = 3 µM and breast cancer cell BT474 with an 
IC50  =  4  µM but not in MCF7 cells (IC50  =  19.6  µM). A 
novel series of tricyclic oxazine fused quinazolines through 
intramolecular cyclization were reported as potent antitumor 
agents (Sun et al., 2016). Compounds 46a–h demonstrated 
more potent activities against gastric carcinoma cell NCI‐
N87, epidermoid carcinoma cell A431, adenocarcinoma cell 
NCI‐H1975, BT474, and adenocarcinoma cell Calu3 lines 

with IC50 values of 0.1  ~  2.01  μM compared to gefitinib 
(IC50: 0.36 ~ 1.00 μM) and erlotinib (IC50: 0.75~>10 μM) 
(Figure 25).

Chen et al. (2014) have synthesized and characterized a 
series of novel tricyclic oxazine fused quinazolines 47a–h 
and tested against cancer cell lines including gastric carci-
noma cell NCI‐N87, epidermoid carcinoma cell A431, NCI‐
H1975, BT474, and Calu3 lines. These reported compounds 
performed impressive inhibition activity against the cell 
lines. The activity of compound 47h (IC50 = 0.046–0.24 μM) 
is more potent than erlotinib b (IC50: 0.75–>10 μM) and gefi-
tinib (IC50: 0.36–1.00 μM) against A431, NCI‐N87, BT474, 
Calu3. 2‐oxo‐benzo[1,4]oxazine analogues 48a–h have been 
synthesized and characterized by Jaiswal et al. (2018). The 
cytotoxic studies of these compounds in 3T3 fibroblast cell 
lines were carried out and found to be non‐toxic in nature. In 
addition, all compounds were identified as promising platelet 
aggregation inhibitors as compared to aspirin (Figure 26).

A series of [1,3]oxazino fused acridines 49a–f were pre-
pared by Ouberai et al. (Ouberai et al., 2006), and their cyto-
toxic activity was conducted against HT29 colon carcinoma 
cell line. The substituent located in position 2 of the oxazine 
ring may play important role in increasing the bioactivity. 
Basappa et al. (2010) have designed and synthesized a novel 
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pyranoside mimetic compound, namely DMBO 2‐(2,6‐diflu-
orophenyl)‐5‐(4‐methoxyphenyl)‐1‐oxa‐3‐azaspiro[5.5]un-
decane (50). This compound showed strong anti‐proliferation 
activity of tumor necrosis factor (TNF‐α) of ovarian cancer 
cells (OVSAHO) with an IC50 value of 16 μM and with an 
IC50 value of 13 μM against osteosarcoma cell line (LM8G7) 
(Figure 27).

Morrison, Al‐Rawi, Jennings, Thompson, and Angove 
(2016) have described the synthesis of a series of 8‐aryl‐2‐
morphoilno‐4H‐benzo[e][1,3]oxazin‐4‐ones with potent 
activity against PI3K and DNA‐PK. The compounds were 
evaluated for their anti‐proliferative activity, in which com-
pound 51a showed strong anti‐proliferative activity (GI% 
at 10  µM  =  92) against renal cancer cell lines (A498) 
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and the compound 51b displayed strong activity with 
IC50 = 0.034 µM and 170‐fold more selective over the PI3K 
inhibitor. New derivatives of 1‐aryl‐2,3‐dihydro‐1H‐naph-
tho[1,2‐e][1,3]oxazine bearing an arylsulfonamide moiety 
52a–h were synthesized and characterized by Mansouri 
et al. (2017) Compound 52e showed most potency against 
MCF7 (IC50 = 16.14 µM) and colorectal carcinoma cell lines 
(HCT116) with an IC50 value of 19.72  µM while 52f dis-
played strong activity against MCF7 (IC50 = 15.22 µM) and 
HCT116 (IC50 = 18.72 µM). Synthesized compounds were 
found less toxic on the normal cells of PBMC rather than 
cancer cell lines (Figure 28).

A series of naphth‐oxazine derivatives 53a–h have been 
synthesized and characterized by using various spectral tools 
(Bouaziz et al., 1991). These reported compounds were 
studied in vitro on leukemia cell (L1210), breast cancer cell 
(MDA‐MB231) lines. The whole compounds showed signif-
icant cytotoxic activity toward both L1210 (IC50  =  0.174–
1.137 µM) and MDA‐MB231 (IC50 = 0.046–2.91 µM) cells. 
Three compounds 53a,b,h were found to be more cytotoxic 
than 5‐hydroxy naphthalene‐1,8‐carbolactone toward L1210. 
Tests on MDA‐MB231 cells revealed a lower activity for all 
compounds compared to 5‐hydroxy naphthalene‐1,8‐car-
bolactone. A Mannich‐type condensation was used to syn-
thesize new derivatives of dihydro furonaphth[1,3]oxazine 
54a–e. All synthesized compounds were screened for in vitro 
cytotoxic activity toward L1210, MDA‐MB, and prostate 
cancer cell lines (PC3). Among them, compound 54b showed 
a significant activity against L1210 cells with an IC50 value 
of 2.995  µM and compound 54c showed potency activity 
(IC50 = 2.256 µM) against L1210 cells (Benameur, Bouaziz, 
Nebois, Bartoli, & Boitard, 1996). A series of 2H‐benzo[b]

[1,4]oxazine derivatives were synthesized and characterized 
by Das Madhukumar Anguiano and Mani (2009). These 
compounds were examined for their biological activities on 
liver hepatocellular cell lines (HepG2) under normoxic and 
hypoxic conditions. Compounds 55a,b specifically inhibit 
hypoxic cancer cell growth on HepG2 cells with an IC50 
value of 87 µM and IC50 value of 10 ± 3.7 µM, respectively 
(Figure 29).

The anticancer activity of a novel series of oxazinyl 
isoflavonoids has been reported (Wang, Hou, Wu, & Yu, 
2012). These compounds were fully characterized by several 
spectral methods. Also, the compounds were tested against 
ovarian cancer cell line (SKOV3), prostate cancer cell line 
(DU145), and leukemic cell line (HL‐60). Furthermore, the 
cellular potency of the compounds 56a,b was determined and 
found to be greater than phenoxodiol. Gupta et al. (2016) have 
synthesized a novel series of 3,4‐dihydro‐2H‐1,3‐oxazine 
derivatives of bakuchiol through Mannich‐type condensa-
tion‐cyclization reaction. The newly synthesized compounds 
were tested against leukemia, breast, colon and pancreatic 
cancer cell lines. Most of the compounds including com-
pound 57 displayed greater cytotoxic profile than the parent 
molecule (Figure 30).

The oxazine substituted 9‐anilinoacridine derivatives 
58a–f have been synthesized and characterized by Kalirajan 
Kulshrestha Sankar and Jubie (2012). These derivatives were 
examined for their antioxidant and anticancer activity against 
Dalton's lymphoma ascites cell lines (DLA). Compounds 
58a, d, e, and f have shown remarkable anticancer activity 
as topoisomerase II inhibitors. In addition, the derivatives 
displayed interesting antioxidant activity when compared to 
standard ascorbic acid (Figure 31).
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Dong et al. (2018) were designed and synthesized two 
series of 2H‐benzo[b][1,4]oxazin derivatives containing 
sulfonamide substituted pyridyl group. The reported com-
pounds were tested for their anti‐proliferative activities 
against HCT116, MDA‐MB231, and gastric cancer cell 
lines (SNU638) cancer cell lines. Compound 59 exhibited 
more potent anti‐proliferative activity. The compound is also 

tested for its cytotoxic effects on normal human cells and 
found much less inhibitory activity against normal lung cells 
(MRC5) with an IC50 = value of 32.8 μM and normal human 
umbilical vein endothelial (HUVEC) with an IC50 value of 
15.6 μM. The anti‐proliferative effects of some commercially 
available oxazine analogues have been examined by Amato 
et al. (2019) using a library of well‐characterized G4‐binder. 
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The study confirmed that these compounds were able to bind 
several G4 structures. Moreover, the assays also convinced 
that these compounds produced effective DNA damage in 
low µM range. Compound 60b is less cytotoxic than com-
pound 60a on normal cells. Ma et al. (2006) have synthesized 
Pyridooxazine–tetrahydroisoquinoline derivatives for inhibi-
tors of multidrug resistance modulating activity. Compound 
61 with trimethoxy groups on phenyl ring displayed high 

cytotoxic and multidrug resistance modulating activity 
(Figure 32).

You et al. (2018) were proceeded a convenient synthesis 
of 3,4‐dihydro‐2H‐naphtho [2,3‐b] [1,4] oxazine‐5,10‐diones 
62a–d via copper‐catalyzed intramolecular C‐O/C‐C coupling 
reaction and tested for activities and exhibited good inhibitory 
activities against A549. Xue et al. (2018) have synthesized 
and characterized a new series of benzoxazinone‐containing 
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3,5‐dimethylisoxazole derivatives based on structural analy-
sis of BET bromodomain inhibitors. The compound 63 binds 
in the acetyl‐lysine binding site of bromodomain‐containing 
protein 4 (BRD4(1)) with an IC50 value of 100 nM and shown 
promising therapeutic effects in a human prostate 22Rv1 car-
cinoma tumor xenograft model. Garg et al. (2013) have de-
scribed the synthesis of 1,3‐benzoxazine derivatives having 
flavones moiety at 3‐position 64a–d. The derivatives were 
explored in vitro against MCF7 cell lines and found to be 
most potent. Furthermore, molecular docking studies of these 
compounds were also carried out, which is in good agree-
ment with the experimental results (Figure 33).

The biological studies of a series of 1,3‐oxazines, ben-
zoxazines scaffolds against human methionyl‐tRNA synthe-
tase (MRS) has been reported (Bharathkumar et al., 2015). 
The compound 65 proved to be potent and significantly sup-
pressed the proliferation of lung carcinoma and colon cancer 
cells (Figure 34).

Ultrasound‐assisted irradiation was employing to prepare 
new derivatives (Sharma et al., 2018; Sharma et al., 2018) 
of C‐3 tethered 2‐oxo‐benzo[1,4]oxazines 66a–j. The in 
vitro cytotoxic study of these compounds was carried out 
in MTT assay. The study displayed non‐toxic nature of the 
compounds 66a and 66b in non‐cancerous 3T3 fibroblast cell 
lines (Figure 35).

The design and cytotoxic activity of a series of ethyl 3‐
oxo‐2‐(substituted‐phenylamino)‐3,4‐dihydro‐2H‐benzo[b]
[1,4]oxazine‐6‐carboxylates 67a–e has been reported by Lin 

et al. (2016) The in vitro cytotoxicity against eleven can-
cers and one normal cell line was carried out and found to 
be highly cytotoxic with growth inhibition values of 0.34 to 
>50 µM (Figure 36).

A series of 3‐ferrocenyl‐2‐ferrocenylmethyl‐2‐morpholi-
no‐2H‐areno[1,4]oxazines 68a–f have been synthesized and 
characterized by García, Flores‐Álamo, Martínez‐Klimova, 
Ramírez Apan, and Klimova (2018) The compounds were 
screened in vitro against six human cancer cell lines includ-
ing HCT15, MCF7, K562, PC3, glioblastoma cell (U251), 
and lung cancer cell (SKLU1) lines using sulforhodamine‐B 
assay as described in the protocols established by the 
National Cancer Institute (Monks et al., 1991; Skehan et 
al., 1990). Some of the compounds displayed significant cy-
totoxic activity. This study will help to develop better and 
safer therapeutic antitumor agents (Figure 37).

6 |  ANTI‐INFLAMMATORY STUDY

Anti‐inflammatory agents play an important role in reducing 
inflammation in the body and acute and chronic inflamma-
tory conditions. The development of more selective, toler-
able, and efficacious agents able to control the inflammatory 
process is being vigorously pursued due to their undesirable 
side and adverse effects. Aspirin and ibuprofen are common 
anti‐inflammatory drugs. Oxazines and their derivatives are 
known to have excellent anti‐inflammatory activity.
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Zhang, Li, Cao, Tian, and Quan (2017) have stud-
ied the effect of new derivatives of tetrahydro‐2H,8H‐
chromeno[8,7‐e][1,3]oxazin‐2‐one on lipopolysaccharide 
(LPS)‐induced cytokine levels in mouse macrophage cells 
(RAW264.7). The results showed that the compound of 
9‐(2‐chlorophenyl)‐3,4,9,10‐tetrahydro‐2H,8H‐chrom-
eno[8,7‐e][1,3]oxazin‐2‐one (69) could inhibit inflamma-
tory responses via suppression of the NF‐κB and MAPK 
signaling pathways. 3‐hydroxy‐2,2‐dimethylchroman‐4‐
yl)‐2H‐benzo[b][1,4]oxazin‐3(4H)‐one derivatives 70a‐f 
have been synthesized and characterized by various spectral 
methods (Bano, Barot, Jain, & Ghate, 2015). The biological 
activities of these compounds were evaluated for KATP chan-
nel opener as antihypertensive activity. Compounds 17a, 
17b, 17c, and 17d have exhibited around 40% inhibition of 

COX1 as compared to the inhibition of COX2. Compounds 
17e and 17f displayed notable inhibition activity more than 
50% of COX‐2 compared with the inhibition of COX1 at a 
concentration of 0.3 mg/ml. New benzoxazine derivatives 
have been reported by solvent‐free microwave thermolysis 
(Akhter, Habibullah, et al., 2011). These compounds were 
tested for their anti‐inflammatory activity. Compound 71 
exhibited 74.87% in rat paw edema, 57.38% of protection 
against acetic acid‐induced writhing, 0.08 of severity index 
(SI) of gastric damage compared to 82.33 value of ibu-
profen. Some novel oxazine derivatives have been synthe-
sized and characterized by using Bi2O3 catalyst (Srinivas et 
al., 2015). The biological activities were also carried out. 
According to the study, compound 72 was most potent hav-
ing high degree of selectivity in inhibition toward COX2 
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over COX1. This study may be helpful in developing new 
COX2 specific inhibitors (Figure 38).

7 |  NEURODEGENERATIVE 
STUDY

The amino‐1,4‐oxazine‐derived BACE‐1 inhibitors has been 
synthesized and characterized by Veenstra et al. (2018). All 
the compounds displayed nanomolar activity for the inhibi-
tion of Ab release in comparison with biochemical enzyme 
inhibition assay. Compound 73 fixed the in vitro results by 
dose‐dependently reducing A neurotoxic β‐amyloid (Aβ) 
levels in mice (IC50 = 8 nM). A novel 2‐ethoxy‐4,5‐diphe-
nyl‐1,3‐oxazine‐6‐one (74) has been designed and char-
acterized by Ansari et al. (Ansari, Khodagholi, Amini, & 
Shaerzadeh, 2011). The biological study proved that this 
compound could increase heat shock proteins Hsp70 and 
Hsp32 levels. Pretreatment of the cells with this reported 
compound also increases γ‐GCS level and antioxidant en-
zyme activities. A novel series of chiral oxazino‐indoles 
75a–d have been prepared and characterized by Chen, Tao, 
et al. (2016). These compounds performed serious neuropro-
tective effects against Aβ25–35‐induced neuronal damage. The 
results clearly indicated that the synthesized compounds dis-
played robust neuroprotective effects against Aβ25–35 induced 
neurotoxicity. (Figure 39).

The synthesis and structure relationship study of a se-
ries of BACE inhibitors containing oxazines have been re-
ported by Low et al. (2018) Aβ peptide is a responsible of 
Alzheimer's disease (AD) in which produced by β‐secretase 
enzyme and BACE inhibitors can be recuced the levels of 
Aβ in the AD brain. The derivative 76 was confirmed as a 
potent (IC50 = 15 nM) BACE inhibitor with acceptable ab-
sorption, distribution, metabolism, and excretion properties. 

In vivo, it also exhibited a notable reduction of brain and CSF 
Ab40 levels. The synthesis and characterization of novel ox-
azine‐based BACE1 inhibitors 77a,b have been reported by 
Fuchino et al. (2018) to improve brain penetration by lower-
ing amidine basicity. According to the study, the compounds 
demonstrated significant Aβ reduction. Potent 6‐substituted 
5‐fluoro‐1,3‐dihydro‐oxazine β‐secretase (BACE1) inhibi-
tors have been developed by Nakahara et al. (2018) via active 
conformation stabilization. Compound 78 inhibited hERG 
and displayed high P‐gp efflux with robust Aβ reduction. The 
compound also performed significant Aβ reduction at a dose 
of no more than 0.16 mg/kg in dog (Figure 40).

Rombouts et al. (2015) have developed the synthesis of 
novel 1,4‐oxazineanalogues. These were found to have potent 
in vitro inhibition in enzymatic and cellular BACE1 assays. 
The newly synthesized derivatives 79a and 79b demonstrated 
to be orally bioavailable, centrally active and which exhibited 
robust lowering of brain and cerebrospinal fluid (CSF Aβ) 
levels, respectively, in mouse and dog models. Allison et al. 
(Allison & Mani, 2017) have developed gram‐scale synthe-
sis of β‐secretase 1 (BACE 1). Inhibitor in which overcame 
the use of hazardous, expensive reagents, and numerical 
chromatographic purifications that led to poor overall yield 
(<2%). Compound 80 was proved to be one of the most 
promising and selected for further bioactivity evaluation 
(Figure 41).

Osteoarthritis (OA) is a common degenerative joint 
disease. Ho et al. (2019) have reported the anti‐osteoar-
thritis effects of 3‐(4‐chloro‐2‐fluorophenyl)‐6‐(2,4‐di-
fluorophenyl)‐2H‐benzo[e] [1,3]oxazine‐2,4(3H)‐dione 
(Cm‐02) and 6‐(2,4‐difluorophenyl)‐3‐(3,4‐difluoro-
phenyl)‐2H‐benzo[e] [1,3] oxazine‐2,4(3H)‐dione (Ck‐02). 
Anti‐osteoarthritic effects were determined in terms of pro-
tein and mRNA levels associated with the pathogenesis of 
OA. The results demonstrated that both Cm‐02 and Ck‐02 
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have potent anti‐inflammatory activities and the ability to 
protect cartilage in an OA cell model, which will be very 
useful for the therapeutic treatment of OA.

8 |  MISCELLANEOUS STUDY

A novel series of 2‐thiazolyl substituted‐2,3‐dihydro‐1H‐
naphtho[1,2‐e][1,3]oxazine derivatives 81a–d have been de-
veloped (Gawali et al., 2018) on the basis of structure activity 
relationships. The inhibitory effect on HIV‐1 reverse tran-
scriptase (RT) enzyme activity was studied. The synthesized 

compounds (Figure 42) inhibited potent activity of HIV‐1 
RT at low concentration and demonstrated a better thera-
peutic index (TI) than known HIV‐1 RT inhibitors such as 
Zidovudine and Efavirenzb.

Oxazine‐based small molecule targeting 5‐LOX and 
AChE was designed and developed (Sukhorukov et al., 
2014). The most active compound 82 displayed significant 
inhibitory activity toward 5‐LOX and AChE. A potent and 
selective diacylglycerol acyltransferase 1 (DGAT1) inhibi-
tor 1 containing a pyrimidooxazine core and a phenylcyclo-
hexylacetic acid substituent (IC50  =  40  nM) was reported 
(Fox, Sugimoto, Iio, Yoshida, & Zhang, 2014). Inhibitor 83 
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acted as a promising preclinical candidate to form 2‐hydroxy 
metabolite in cynomolgus monkeys. Tiwari, Meshram, and 
Ali (2011) have developed a series of 6‐(2‐chloroquino-
lin‐3‐yl)‐4 substituted phenyl‐6‐H‐1,3‐oxazin‐2‐amines 
in two reaction step including Claisen–Schmidt reaction. 
Compounds 84a,b were found to have better antimalarial 
activity than chloroquine against resistant strain of P. falci-
parum (Figure 43).

Novel phenyl acetic acid and α‐hydroxy propionic acid 
based Thieno[3,2‐b][1,4]oxazinone derivatives were syn-
thesized by Das et al. (2003). In vivo study demonstrated 
that compound 85 showed higher potency in which has 
both glucose‐ and lipid‐lowering properties. Schiff bases of 
1, 3‐oxazine derivatives 86a–f have been synthesized and 
characterized from 1,3‐oxazine‐2‐amine and substituted 
benzaldehydes (Ramesh, Mahesh, & Jyoti, 2012). Newly 
synthesized derivatives were examined for their anticoagu-
lant activity by Quick's method. The compounds showed sig-
nificant anticoagulant activity (Figure 44).

A series of 6‐(2,4‐difluorophenyl)‐3‐phenyl‐2H‐ben-
zo[e][1,3]oxazine‐2,4(3H)‐dione derivatives have been 
synthesized and characterized by Lee et al. (2015) These 
compounds were tested for their inhibitory effects on os-
teoclast activities by using telomere repeat amplification 
protocol assay. The study revealed that targets 87a and 
87b presented more potent osteoclast‐inhibitory activities. 
Koini et al. (2012) have synthesized the microwave‐assisted 
6‐substituted‐5,7,8‐trimethyl‐1,4‐benzoxazines‐ones 88a–
k by Suzuki‐Miyaura cross coupling method. Compounds 
88b and 88j showed high activity with IC50 = 1.21 μM and 
0.86 μM, respectively, as potential agents against toxoplas-
mosis (Figure 45).

The synthesis of 2‐(N substituted‐3‐aminopyridine)‐sub-
stituted‐1,3‐benzoxazines 89a–c has been reported by Ihmaid 
et al. (Ihmaid, Al‐Rawi, Bradley, Angove, & Robertson, 
2012) These compounds were studied for their DNA‐PK 
inhibition and antiplatelet activity. DNA‐PK inhibition data 
for 2‐morpholino‐substituted‐1,3‐benzoxazines displayed 
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significant activity. Compound 89b exhibited greater inhibi-
tion of DNA‐PK over PI3K (Figure 46).

Morpholino‐substituted‐1,3‐naphth‐oxazines (Figure 47) 
have been synthesized and evaluated for their homology mod-
eling, DNA‐PK inhibition, and antiplatelet activity (Ihmaid 
et al., 2011). IC50 for the compound 90a was 55 μM due to 

inhibitory effect on human platelet aggregation induced by 
collagen. Moreover, DNA‐PK activity was measured and 
showed that the most active are 90b (IC50 = 0.091 μM), 90c 
(IC50 = 0.191 μM), and 90d (IC50 = 0.331 μM).

A series of 1,4‐oxazine BACE1 inhibitors have syn-
thesized and characterized by Gijsen et al. (Gijsen et al., 
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2018). Compound 91 having CF3 group (electron‐with-
drawing) resulted in good in vivo efficacy with a sufficient 
cardiovascular safety margin. The effect of replacement 
of 2‐fluoro substituent with other groups was discussed. 
Benzopyrimidopyrrolo‐oxazinedione of the CFTR inhibitors 
has been designed and synthesized by Snyder, Tradtrantip, 
Yao, Kurth, and Verkman (2011). Modification of pyrim-
ido‐pyrrolo‐quinoxalinedione including bromine substitu-
tion to form compound 92 which inhibited CFTR with IC50 
∼8  nM compared to pyrimido‐pyrrolo‐quinoxalinedione 
and showed >10‐fold greater metabolic stability and much 
greater polarity/aqueous solubility. A series of indole‐ben-
zoxazinones (Family I) and benzoxazine‐arylpiperazine de-
rivatives (Family II) have been synthesized and characterized 
by Méndez‐Rojas et al. (2018). These compounds were tested 
for their potential AChE inhibitory properties and displayed 

effective inhibitory profiles with Ki values of 20.3 ± 0.9 μM 
for 93a and 20.2 ± 0.9 μM for 93b (Figure 48).

Investigating 900‐compound pretomanid analogues in-
cluding several hits through head‐to‐head assessments in a 
Leishmania donovani mouse model have been studied by 
Thompson et al. (Thompson et al., 2018). Compounds 94a 
and 94b indicated significant activity and found to be potent 
inhibitors of hERG. Virtual screening of commercially pur-
chased small molecule repository of 50,000 drug‐like com-
pounds using validated docking protocol for identification 
of potential GSK‐3β inhibitors has been studied by Joshi, 
Gupta, and Vishwakarma (2017). GSK‐3β is widely excepted 
molecular target for number of diseases such as diabetes, can-
cer, and Alzheimer's disease. The virtual screening efforts led 
to identify 95 class of GSK‐3β inhibitor with an IC50 value of 
1.6 µM (Figure 49).
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Chen, Lee, et al. (2016), Chen, Tao, et al. (2016) have 
reported the design and synthesis of a series of salicylani-
lide analogues and their corresponding derivatives. These 
compounds were tested for their anti‐osteoclastogenic ac-
tivities of a potent anti‐restorative. Compound 96 displayed 
most potent inhibitory effects on RANKL‐induced osteoclast 

formation with no remarkable cytotoxic effects. A series of 
L‐ or LD‐2‐amino acid ester (substituted)‐benz[1,3]oxazines 
97a–d have been synthesized and characterized by Ihmaid, 
Fitzgibbon, and Al‐Rawi (2015). Some of these compounds 
showed weak inhibition on DNA‐PK and platelet aggrega-
tion. Furthermore, these compounds were also acted as effec-
tive chemo‐sensitizers (Figure 50).

Development of benzo[1,4]oxazines has been reported by 
Warner, Cheng, Yildiz, and Linington (2015) and compound 
98 dispersal agents against Vibrio cholera. Structure–activity 
relationships study demonstrated the importance of existing 
amidic proton and exocyclic alkene for compound activity. 
New ROMK inhibitors have been synthesized by Zhu et al. 
(2016). The reported compounds “Acyl octahydropyrazino 
[2,1‐c][1,4]oxazines” showed comparable ROMK potency 
and significant pharmacokinetic properties. In addition, com-
pound 99 also showed significantly improved half‐life in the 
preclinical species (Figure 51).
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Some of benzopyrimido‐pyrrolo‐oxazinediones such as 
enantiomerically pure (R)‐isomer 100 inhibits the CFTR by 
competition with ATP (Kim et al., 2015). Molecular simu-
lations showed lower binding energy for the (R) versus (S) 
stereoisomers and this result convinced that (R)‐isomer could 
bind near the canonical ATP binding site. A series of 2‐mor-
pholino‐substituted‐1,3‐benzoxazines have been synthesized 
and characterized by Pritchard et al. (Pritchard, Al‐Rawi, & 
Bradley, 2007). These derivatives were evaluated for their 
activity against ADP‐ and collagen‐induced platelet aggre-
gation. The presence of a methyl or phenyl group at C‐8 po-
sition of 2‐morpholino benzoxazines is very important for 
antiplatelet activity. Compound 101 displayed most potent 
activity against both ADP‐ and collagen‐induced platelet ag-
gregation (Figure 52).

Significant anticonvulsant activity was confirmed 
for novel imidazo‐[1,3]‐oxazine derivatives 102a,b. 
Synthesized compounds were successfully prepared 
through solvent‐free reaction of hydrazine hydrate, aro-
matic aldehyde, and 5,5‐dimethylcyclohexane‐1,3‐dione 
(El‐Ansary, Hassan, Rahman, Farag, & Hamed, 2016; 
Figure 53).

9 |  CONCLUSION

The chemistry of oxazines gains much synthetic interest 
due to their plethora of applications in diverse and promis-
ing areas. The biological activities of oxazines including 
antimicrobial, antitubercular, antioxidant, and antican-
cer activities are undoubtedly beneficial to human health. 
Moreover, these compounds also act as anti‐inflammatory 
agents to reduce inflammation. Some of these compounds 
are also used for the treatment of neurodegenerative and 
Alzheimer's diseases. These compounds exhibited signifi-
cant anticoagulant and antiplatelet activity. The literature 
study revealed that these compounds show potent anti‐
resorptive activity for treating of osteoclastic diseases. 
Benzopyrimido‐pyrrolooxazinediones are potential devel-
opment candidates for antisecretory therapy of polycystic 
kidney disease. These compounds reduce cystogenesis in 
a model of polycystic kidney disease. Furthermore, the 
oxazine derivatives displayed marked blood glucose and 
triglyceride lowering activities in mice models. Also, 
it presents better antimalarial activity than chloroquine 
against resistant strain of P. falciparum. In addition, some 
of these compounds displayed potent inhibition of HIV‐1 
RT activity at low concentration. This will be very useful 
for the development of HIV‐1 inhibitors. Considering these 
wide‐ranging applications, it is envisaged that this review 
will provide ample references for the researchers to do fur-
ther research in this area.
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