Haryadi, Haryadi (2021) Modular Blok Di Ruang Barisan Terjumlah Cesaro Orlicz. Epsilon: Jurnal Matematika Murni dan Terapan, 15 (2). pp. 28-38. ISSN 2656-7660
Text
1. Dokumen EPSILON v15s2 2021.pdf Download (283kB) |
|
Text
2. Peer Review EPSILON v15s2 2021.pdf Download (3MB) |
|
Text
3. Plagiarism Checker EPSILON v15s2 2021.pdf Download (100kB) |
Official URL: https://ppjp.ulm.ac.id/journals/index.php/epsilon/...
Abstract
On the Cesaro summable of orde-p sequence space, if the fuction is replaced by Orlicz function, it is not always easy to define norm in the space. In this paper, we study some properties of the Cesaro Orlicz summable sequence space. First, on the space we define a modular and its the luxemburg norm, and then some topological properties is explored. The results show that the sequence spaces is modular complete and nom complete. In addition, the space is a BK-space but not an AK-space.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Olicz function, Cesaro, sequences |
Subjects: | 500 Natural Science and Mathematics > 510 - 519 Mathematics > 510 Mathematics 500 Natural Science and Mathematics > 510 - 519 Mathematics > 515 Analysis, Theory of Functions 500 Natural Science and Mathematics > 510 - 519 Mathematics > 519 Applied Mathematics > 519.8 Special Topics of Applied Mathematics |
Divisions: | Perpustakaan > Journals |
Depositing User: | Publikasi Library UMPR |
Date Deposited: | 02 Feb 2023 05:26 |
Last Modified: | 02 Feb 2023 05:26 |
URI: | http://repository.umpr.ac.id/id/eprint/292 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year