Modular Blok Di Ruang Barisan Terjumlah Cesaro Orlicz

Haryadi, Haryadi (2021) Modular Blok Di Ruang Barisan Terjumlah Cesaro Orlicz. Epsilon: Jurnal Matematika Murni dan Terapan, 15 (2). pp. 28-38. ISSN 2656-7660

[img] Text
1. Dokumen EPSILON v15s2 2021.pdf

Download (283kB)
[img] Text
2. Peer Review EPSILON v15s2 2021.pdf

Download (3MB)
[img] Text
3. Plagiarism Checker EPSILON v15s2 2021.pdf

Download (100kB)
Official URL: https://ppjp.ulm.ac.id/journals/index.php/epsilon/...

Abstract

On the Cesaro summable of orde-p sequence space, if the fuction is replaced by Orlicz function, it is not always easy to define norm in the space. In this paper, we study some properties of the Cesaro Orlicz summable sequence space. First, on the space we define a modular and its the luxemburg norm, and then some topological properties is explored. The results show that the sequence spaces is modular complete and nom complete. In addition, the space is a BK-space but not an AK-space.

Item Type: Article
Uncontrolled Keywords: Olicz function, Cesaro, sequences
Subjects: 500 Natural Science and Mathematics > 510 - 519 Mathematics > 510 Mathematics
500 Natural Science and Mathematics > 510 - 519 Mathematics > 515 Analysis, Theory of Functions
500 Natural Science and Mathematics > 510 - 519 Mathematics > 519 Applied Mathematics > 519.8 Special Topics of Applied Mathematics
Divisions: Perpustakaan > Journals
Depositing User: Publikasi Library UMPR
Date Deposited: 02 Feb 2023 05:26
Last Modified: 02 Feb 2023 05:26
URI: http://repository.umpr.ac.id/id/eprint/292

Actions (login required)

View Item View Item